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We study the roughening dynamics of a two-dimensional front where advances are made at minimal
pinning sites, while slopes of the front are kept finite by additional lateral growth. The interface
self-organizes toward a critical state with long-range correlations in space and time. The dynamics
is governed by intermittent bursts which give rise to a scale-invariant avalanche distribution and
multiscaling of the temporal roughening. Generalizing a recently proposed theory for the one-
dimensional case, we demonstrate that the multiscaling can be explained by the static roughness
exponent alone. The correlation between subsequent deposition activities exhibits the same power

law as in the one-dimensional case.

PACS number(s): 05.70.Ln, 47.55.Mh, 68.45.Gd, 68.35.Fx

Dynamical roughening interfaces represent a simple
class of nonequilibrium extended systems which possess
generic scale invariance. A particularly simple example
of such systems are interfaces driven locally by uncor-
related Gaussian noise, as discussed by [1]. Interface
motion has been experimentally studied in widely differ-
ent context [2-6] where it generally was found that the
height-height correlations of snapshots of the interfaces
failed the theoretical predictions systematically [1]. One
attempt to remedy this failure was an introduction of
power law distributions in the external driving of the in-
terface [7-9]. Another possibility is to investigate under
which dynamical conditions long-range correlations spon-
taneously might appear; that is to investigate when the
system becomes self-organized critical [10], a phenomena
that can take place in large systems when the overall
driving is very slow compared to the microscopic relax-
ation. One such mechanism was proposed in [11] where
a propagating interface in a quenched random medium
primarily advanced at the point of minimal global resis-
tance, after which its neighborhood advanced until local
slopes remain bounded. An unbounded slope version of
this type of interface dynamics, also utilizing the assump-
tions of invasion percolation [12], has been proposed in
[13].

The model of [11] has been extensively studied in one
dimension [11,14-17]. In particular it was found that the
width W scales with system size L as

W2=1
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where the static roughness exponent x = 0.63 & 0.01
equals the ratio of perpendicular to parallel correlation
length for an interface pinned to the backbone of a di-
rected percolation cluster consistent of connected points
of strong pinning. Also it was demonstrated by [16] that
the one-dimensional interface exhibits burstlike activity
on all scales with a burst size distribution K(S) o« §77,
where 7 = 2/(1 + x) is given by the roughness exponent
x. Finally, the observation of burst dominated activity
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lead [16, 17] to an explanation of the observed temporal
multiscaling [15, 18]

Ag(t) = ((ha(t +t') = ha(t')) = (ha(t +t') — hs(t')))9) /4
(2)
~ ((hi(t +t') = ha(t') )9 oc P (3)

with B, = (x +1/q)/(x + 1) for ¢ > 0 in agreement with
the numerical observation of Ref. [15]. Time is measured
in units of increased heights per site, and we will see later
that the relation for 3, can be easily generalized to higher
dimensions. The subtraction of the average displacement
in (2) has no significant influence. In fact it appears
that without subtraction of the average (3) we obtain
a longer temporal scaling regime, because then deviation
from scaling only occurs after all sites have changed their
height value.

It is now known that the model of Ref. [11] naturally
drives the interface into a self-organized critical state,
with correlations and dynamics that can be understood
from the static scaling exponents of directed percolation
[14]. A basic assumption of the model is the separa-
tion of time scales that allow us to search for the global
minimum of a quenched random noise, before each lo-
cal adjustment takes place. In the following we investi-
gate how this dynamics wrinkle a two-dimensional front,
and we will see that the scaling arguments of [16] can
be generalized to explain some of the observed features.
The study of higher dimensions is of interest not only for
the present model, but in general for dynamical interface
models exhibiting burstlike activity [19].

The two dimensional version of [11] is defined on a lat-
tice where each point (z,y, k) is assigned an uncorrelated
random number 7 = n(z, y, k) in the interval [0, 1]. = and
y define the horizontal base coordinates, h the height of
the interface over the base. At each update we localize
the smallest 7 on the interface. At this place, where the
smallest random pinning 7(z,y, h) is, we add one unit to
h and reach a new site with a new random number. If
the neighboring gradients of h exceeds 1 we let neighbor
sites of the front advance h(r) — h(r) + 1. This process

2804 ©1994 The American Physical Society



49 INTERMITTENT DYNAMICS AND SELF-ORGANIZED . .. 2805

does not necessarily only involve the nearest four neigh-
bors but should be propagated out in the lattice precisely
until all slopes remain less than or equal 1. If we come
to the end of the lattice we continue at the other end
of it, using periodic boundary conditions. The physi-
cal justification for always choosing the minimal pinning
site for primary growth can for example be due to an
overall instant pressure equilibration. The second main
assumption is that of lateral growth that breaks the local
rotational symmetry and thereby defines the growth to
be fundamentally different from invasion percolation.

The growth dynamics of the model develops first
through a transient regime where subsequent updates
are uncorrelated but, as time progresses, become corre-
lated on longer and longer distances. After the transient
regime one reaches steady state where activities on the
front always are highly correlated. It is the scaling prop-
erties at this saturated state we consider here.

Figure 1 displays a typical snapshot of the interface
after saturation is reached. Although we are in 2+1
dimension we observe a highly rough interface with a
roughness exponent W = /((h— (h))?) o« LX with
X = 0.50+0.03 deduced from Fig. 2(a) [20]. For compar-
ison the (2+41)-dimensional Kardar-Parisi-Zhang equa-
tion predicts x = 0.40 [1] whereas the similar Edwards-
Wilkinson [21] equation without the nonlinear term only
gives logarithmic roughening W « log(L).

When the interface propagate, the chance to advance is
largest in the neighborhood of recent propagation [15] be-
cause there the typical recent advance has opened for new
territory with likely smaller 7’s. This correlated propa-
gation causes a burstlike activity where subsequent prop-
agation builds up locally and then spreads horizontally.
One way to characterize this activity pattern is through
the moments: A4(At) defined in Eq. 3. Following [16,17]
we assume that during time At we have a local buildup
of a burst given by its extension parallel to the interface
r and its extension perpendicular to the interface
[22]. Then for each burst

'rf r; = At. (4)

The vertical to horizontal buildup is connected by the
roughness exponent (r ) o (rj)X where () refer to
ensemble averaging. The qth moment of the buildup is

FIG.1. Static snapshot of a two-dimensional front at sat-
uration. The base plane indicates the structure of the level
surfaces of constant value of h(z,y). Note that these appear
wrinkled.
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FIG. 2. (a) Width versus system size L. The results are

fitted by W o L°®0%%%3  (b) Scaling of height-height cor-
relations with time (for system with size L?, L = 512): The
diamonds shows the zeroth moment, plusses the second mo-
ment, the squares the fourth moment, and crosses the infinite
moment.

given by the weighted perpendicular extension

Ag(At) = ([hi(t' + At) — hi(t)]7)Y/9
= (P r)Me = (A, (5)
with
_ gx+D D
By = o+ aD for ¢ >0 and ,60—X+D.

(6)

Here we have assumed that for big bursts the ensemble
average of products can be replaced by products of en-
semble averages. From the numerical simulations shown
in Fig. 2(b) we find 8, = 0.80 £ 0.01, 3; = 0.60 % 0.01,
Ba = 0.40 £ 0.02, and Bo = 0.20 & 0.02. Thus there is
perfect agreement between theory and simulations when
we insert D = 2. Notice that, in general, for other types
of interfaces dynamics dominated by burstlike processes,
D does not need to be equal the horizontal dimension. It
could be smaller, in that case reflecting either a fractal
horizontal growth or a preferred direction of the individ-
ual bursts of growth. Notice also that the argument only
uses the relation r; rl’l‘. Here x is given by the static
roughening exponent, but the argument goes beyond this.
It could be applied even in case the width of the inter-
face grows beyond all limits and also when x > 1. The
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only requirement is the scaling of vertical to horizontal
growth, which then implies the shown interpolation for
other moments.

Alternatively to the temporal multiscaling one may
characterize the burstlike activity directly through the
notion of associated processes [16] which are the
avalanches associated to the intermittent advance of the
front seen in these types of models. Such quantities have
also been used to characterize the dynamics of invasion
percolation [23]. To introduce these dynamic quantities
we first make the observation that although the noise
consists of random numbers equally distributed between
0 and 1 then the noise distribution along snapshots of
the interface at saturation is far from random. In fact,
as seen in Fig. 3, then the distribution exhibits a steplike
function, with nearly no values of 7 below a certain criti-
cal value of . = 0.2024+0.002. However, as is shown with
the crosses, the point that is actually chosen as activa-
tion centers is always below 7.. These activated values of
7 may represent the exact time dependent external pres-
sure needed to pass the minimal pinning site, thereby
securing the continued marginal propagation of the in-
terface.

Following Ref. [16] we define associated processes
as the number of invaded sites between the subsequent
breakthrough of a given pinning value 7, selected close
below 7.. When 7, is far below 7., subsequent break-
through happens often, and we observe exponentially
bounded avalanches. Figure 4(a) show that for 7, close
below 7. the mass distribution of avalanches approaches
a power law (note S oc At)

o s )
with exponent 7 = 1.45 £ 0.03. One may also consider
the distribution of horizontal extension (area A) of the
avalanches

A
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FIG. 3. Ensemble-averaged normalized distribution of

quenched noise along saturated members of the propagat-
ing two-dimensional front is shown with dashed line. The
diamonds show the distribution of quenched noise at points
chosen as next activity center, rescaled by a factor 1/4. In
contrast to the one-dimensional case, then the probability of
selecting a site with value 7 is close to threshold x (7. —7)”
with v = 0.50 & 0.05 different from the linear scaling for the
1D case.
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FIG. 4. (a) Distribution of avalanches, corresponding to a
punctuation 7, = 7. = 0.202. Solid line displays the total new
volume invaded by the avalanche. The dashed line shows the
area of the avalanche, measured parallel to the front. (b) Plot
of an avalanche, where darkness represents the height. Note
the fractal property of the perimeter. (c) Geometrical mea-
sures of avalanches. The solid line shows how the number of
perimeter sites scales with the “diameter” D of the avalanche,
where D is determined as the square root of its area. The
dashed line is the number of boxes containing perimeter sites,
averaged over many big avalanches, as a function of 256/b
where b is the length of the box. The dotted lines show, re-
spectively, the scaling of maximal height and of the average
height of an avalanche, as function of its “diameter” D.
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with exponent 74 = 1.60+0.05. One may attempt to un-
derstand these scalings by making a one-dimensional cut
through the avalanche, assuming both that the avalanche
is compact and that the geometry of such a cut is gov-
erned completely by the roughness exponent x. Applying
then the procedure of [16] valid for (1+1)-dimensional in-
terface propagation, these assumptions lead to a value of
avalanche exponent 7 = B—T_; = 1.20 in disagreement
with the numerical results. The reason for this discrep-
ancy, we believe, is due to the fact that the perimeter
of an avalanche is fractal [see the visualization in Fig.
4(b)], with dimension d = 1.20 £ 0.05 as seen from the
full (or dashed) line in Fig. 4(c). From the avalanche
example shown in Fig. 4(b) one may imagine that a
particular cut selected on a arbitrary perimeter site will
not contain information about the compact center of the
avalanche. It is an open problem to understand whether
one can associate the fractal dimension of the perimeter
and the avalanche exponents 7 and 74 with scaling prop-
erties of the front. In this connection we mention that
numerically we find that both the average height of an
avalanche as well as its maximal height, shown by the
dots in Fig. 4(c), scale with the typical avalanche diame-
ter as D%-50%0-05 which is expected because the avalanche
is encapsuled by two rough surfaces each characterized by
the exponent x = 0.50 £ 0.03.

Another feature of the highly correlated propagating
front is the distribution of distances X between subse-
quent events. As shown in Fig. 5(a) the spatial correla-
tion of subsequent depositions scales as

C(X,At) = X Vg (&) , (9)

where the numerically observed exponent v = 2.2 £ 0.2
appears identical to the similar exponent measured nu-
merically for the one-dimensional version of the model
[24]. In fact this dimensional independence of the activ-
ity jump exponent is also observed in the related h - —h
symmetric model of [25], where simulations of dimensions
d = 2 — 6 [26] show the same jump exponent (equal to
3.15 + 0.1) as in the one-dimensional case. We conjec-
ture that also for the model studied here, the exponent
~ is dimension independent for d > 2, thereby reflect-
ing properties of the involved dynamics that, e.g., goes
beyond the dimension dependent roughness exponent y.

The exponent a takes into account the depletion of
activity in a given point when time between activity At
increases. Notice that a = Bo/D where D = 2 is the
dimension and By denotes the scaling of the horizontal
spread of activity shown with diamonds in Fig. 2. Fur-
thermore Gy = 0.80 is also the scaling exponent for the
decrease in activity in a given point after given activity
[o< 7.1 /(At) [16]]. In addition one could consider the dis-
tribution of waiting times between subsequent advances
in a given point (advances are both when a site is actively
selected for growth and when it is part of an avalanche),
which as seen from the solid line in Fig. 5(b) exhibits a
scaling

Pwail:(t) = t_a'“tv (10)
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FIG. 5. (a) Spatial distribution of activity centers, sepa-

rated in time by At = 1, 4, 10, and 50. The simulated sys-
tem has size L? with L = 256. We have shown the rescaled
distribution, with exponent o = 0.40. (b) Solid line shows
the numerically measured waiting time distribution between
successive updates of the same site is Ppait(t) = ¢t~ 12301,
Dashed line shows the hitting frequency after given update,
and exhibits a scaling t7P° where By = 0.80 =+ 0.01 is the
exponent for horizontal spread of activity.

with a await = 1.2 &+ 0.1 that is smaller than the
corresponding one-dimensional waiting time exponent
Qwait, 10 = 1.35 £ 0.1 [15]. We lack understanding of
both v and awajt.

In summary we have analyzed the static and dynamic
scaling of a two-dimensional propagating front driven at
marginal depinning. We observe a burstlike activity giv-
ing a temporal multiscaling that is explained by the static
roughness exponent x. Furthermore, the burst activity
can be characterized by an avalanche distribution with
different exponents for their sizes and horizontal exten-
sions. Contrary to the one-dimensional case, the prop-
agating two-dimensional front exhibits a significant pos-
itive value of the skewness S = ((h — (h))3)/((h —
(h))?)3/2 = 0.22£0.03 when ensemble averaged over ran-
dom saturated configurations. However, if one does not
average over all configurations, but only over configura-
tions where the minimal % value is close to 7., the value
of the skewness drops significantly, to about 0.09 £ 0.02.
This, we believe, is because the static scaling proper-
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ties of the front at such situations is given by an un-
derlying static structure of connected planes of high 7
sites. A structure that we believe is symmetric under
h — —h, although the used dynamics apparently does
not let the front experience all parts of this structure
with equal weights (downwards peaks are more easily
eliminated than upwards peaks). The scaling property
of this structure is in itself not understood and it rep-
resents a new class of double directed percolation, that
to our knowledge only is mentioned before by [27]. This
means that the front propagate with high skewness be-

tween the rare situations where all n are above 7. and
thus the front is pinned to the underlying static structure.
A structure, where instead of percolating along one direc-
tion, the directional requirement along two timelike axes,
corresponds to having an underlying quenched geometry
of connected branching planes, each without overhangs,
in three-dimensional time-time-height space.
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FIG. 4. (a) Distribution of avalanches, corresponding to a
punctuation 7, = 1. = 0.202. Solid line displays the total new
volume invaded by the avalanche. The dashed line shows the
area of the avalanche, measured parallel to the front. (b) Plot
of an avalanche, where darkness represents the height. Note
the fractal property of the perimeter. (c¢) Geometrical mea-
sures of avalanches. The solid line shows how the number of
perimeter sites scales with the “diameter” D of the avalanche,
where D is determined as the square root of its area. The
dashed line is the number of boxes containing perimeter sites,
averaged over many big avalanches, as a function of 256/b
where b is the length of the box. The dotted lines show, re-
spectively, the scaling of maximal height and of the average
height of an avalanche, as function of its “diameter” D.



